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We investigate and clarify the notion of locality as it pertains to the cascades of two-dimensional turbulence.
The mathematical framework underlying our analysis is the infinite system of balance equations that govern the
generalized unfused structure functions, first introduced by L’vov and Procaccia. As a point of departure we use
a revised version of the system of hypotheses that was proposed by Frisch for three-dimensional turbulence.
We show that both the enstrophy cascade and the inverse energy cascade are local in the sense of nonpertur-
bative statistical locality. We also investigate the stability conditions for both cascades. We have shown that
statistical stability with respect to forcing applies unconditionally for the inverse energy cascade. For the
enstrophy cascade, statistical stability requires large-scale dissipation and a vanishing downscale energy dis-
sipation. A careful discussion of the subtle notion of locality is given at the end of the paper.
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I. INTRODUCTION

The physical notion of locality goes back to the
Kolmogorov-Batchelor idea �1–3� of an eddy cascade in
three-dimensional turbulence where most of the energy is
passed on from large eddies to smaller eddies by cascading
through the intermediate scales. The dimensional analysis
argument behind the theory of two-dimensional turbulence
proposed by Kraichnan �4�, Leith �5�, and Batchelor �6�
�KLB� is based in part on the conjecture that a similar physi-
cal principle governs the upscale transfer of energy and the
downscale transfer of enstrophy. In spite of the importance of
the concept of locality to the foundations of the theory of
hydrodynamic turbulence, there is no consensus on how to
handle the concept rigorously. The need for a more rigorous
understanding of locality becomes more pressing in light of
some paradoxical aspects of the theory of two-dimensional
turbulence which will be briefly reviewed below. Because
quasigeostrophic models of geophysical flows �7–11� rel-
evant both to meteorology and oceonography, and two-
dimensional models of magnetically confined plasma turbu-
lence �12–14� have a similar mathematical structure with
two-dimensional turbulence, we cannot simply disregard the
paradoxes of two-dimensional turbulence as irrelevant on the
grounds that it is a fictitious fluid.

For example, recent numerical simulations �15–18� have
validated the KLB prediction k−3 for the energy spectrum of
the downscale enstrophy cascade. It remains unclear, how-
ever, whether the enstrophy cascade is a local cascade or
nonlocal cascade. One side of the argument is that it cannot
be a local cascade because the slope of the energy spectrum
is too steep. On the other hand, if it is not a local cascade,
then one has to explain why the prediction of dimensional
analysis agrees with numerical simulations. Furthermore, it
is worth remembering that prior to the groundbreaking paper
by Lindborg and Alvelius �15�, every attempt to simulate an
enstrophy cascade failed. It is now understood that the pres-
ence of a dissipation sink at large scales is necessary for a

successful simulation of the enstrophy cascade �19–21�.
Nonetheless, we do not have a good grasp on why the pres-
ence of such a dissipation sink is sufficient. A recent theory
by Falkovich and Lebedev �22,23� predicts the scaling of the
logarithmic corrections to the energy spectrum as well as the
higher order structure functions of the vorticity for the en-
strophy cascade. However, locality, and the existence of the
enstrophy cascade itself are assumptions that are being en-
tered into the theory. The relevant question is to understand
theoretically the conditions needed for the existence of the
enstrophy cascade.

Ironically, the inverse energy cascade presents with an
even more confusing situation. From a theoretical standpoint
one would not expect the inverse energy cascade to be any-
thing but local. From the standpoint of numerical simula-
tions, there are many positive reports of the predicted k−5/3

energy spectrum �24–29�. The most convincing simulation of
the inverse energy cascade has been reported in the paper by
Boffetta et al. �29�, where in addition to the k−5/3 prediction,
the 3 /2 law has also been confirmed. On the other hand, the
locality of the inverse energy cascade has been challenged on
the grounds of numerical simulations giving conflicting re-
sults �30–33�. The current understanding is that under certain
conditions there are coherent structures that spontaneously
form while the inverse energy cascade converges to station-
arity. Apparently, the inverse energy cascade, as a physical
process, continues to take place but it is hidden by the co-
herent structures which give the dominant contribution to the
energy spectrum. Removing the coherent structures artifi-
cially by postprocessing simulation data recovers the k−5/3

energy spectrum �30,32,34�. This aspect of the inverse en-
ergy cascade is not well understood. Furthermore, this phe-
nomenon of the spontaneous generation of coherent struc-
tures is of considerable interest to oceonographers.

In both cases reviewed above the issue at hand is the
breakdown of locality. The theoretical challenge is to under-
stand how and why it happens. It should be noted that recent
theoretical work �22,23,35–40� that expands on the KLB
theory takes locality as well as the existence of the enstrophy
cascade and the inverse energy cascade as assumptions. As a
result, although various aspects of these cascades have been
explained, the more fundamental question of the conditions*gkioulekase@utpa.edu
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needed for the existence of the cascades remains elusive.
In the present paper we analyze the locality of the cas-

cades of two-dimensional turbulence by adapting and gener-
alizing the nonperturbative theory of L’vov et al. �41–46�.
The mathematical framework is an infinite system of equa-
tions that govern the generalized unfused structure functions,
the so-called balance equations. We also employ a scaling
assumption, the fusion rules, which we conjecture to be valid
in the enstrophy cascade and the inverse energy cascade. The
fusion rules govern the scaling of the generalized structure
functions when a subgroup of coordinates of velocity differ-
ences approach each other. In previous work �39,40�, we
used the balance equations to predict a linear superposition
principle between the downscale enstrophy cascade and the
hidden downscale energy cascade which exists for finite
Reynolds number. In that argument we did not use the fusion
rules but we did assume the existence of the cascades. In the
present paper we will consider more carefully the implica-
tions of the fusion rules on the existence question.

The physical intuition behind our argument is as follows.
Let Fn be the generalized structure function and let �n be its
scaling exponent. These structure functions satisfy a system
of equations of the form

OnFn+1 + In = DnFn + Qn. �1�

Here, OnFn+1 is the nonlinear term that includes the effects
of pressure and advection, In is a term associated with the
sweeping interactions, Qn is the forcing term, and Dn is the
dissipation operator. From the fusion rules it can be shown
that the integrals in OnFn+1 are local under the following
conditions: for the downscale cascade UV locality requires
�2�0 and IR locality requires �n+1��2+�n−1; for the upscale
cascade UV locality requires �n−�n−2�0 and IR locality re-
quires �n+1��2+�n−1. These conditions can be shown to be
satisfied by the Hölder inequalities. It follows that the inter-
actions represented by OnFn+1 are local and also self-similar
with scaling exponent �n+1−1.

The implication of this argument is that the nonlinear in-
teractions accounted for by the term OnFn+1 are local both
for the enstrophy cascade and for the inverse energy cascade.
This notion of locality is called statistical nonperturbative
locality �43�. However, nonlocality, in a different stronger
sense, can arise from the forcing term Qn. Although we may
demand that the forcing spectrum be confined to a narrow
interval of length scales, it does not follow that the forcing
term Qn will force the balance equations only at those length
scales. For the case of Gaussian forcing, we show that the
scaling exponent of Qn is qn=�n−2+q2 with q2=2 for the
downscale enstrophy cascade and q2�0 for the inverse en-
ergy cascade. It follows that to have true locality we need
qn− ��n+1−1��0 in the downscale enstrophy cascade and
qn− ��n+1−1��0 in the upscale energy cascade. These con-
ditions are needed for the statistical stability of the cascades
with respect to forcing perturbations.

It should be noted that nonlocality via the forcing term Qn
is only one of a number of possible scenarios for losing
locality. The sweeping term In and the dissipation term DnFn
can also destroy locality under certain conditions. A prelimi-
nary discussion of the sweeping term In was given in a pre-

vious paper �47�, and the dissipation term will be discussed
in a future publication. Finally, it is also possible to lose
locality through violation of the fusion rules. In that case, the
term OnFn+1 itself would not be local. In the present paper
we will show that the UV locality of the term OnFn+1 is very
robust, even under violation of the fusion rules. However, the
same cannot be said for the IR locality. Our viewpoint then is
to consider first the problems that can arise in the favorable
case where the fusion rules are valid, before examining the
validity of the fusion rules themselves in more depth.

The argument of the present paper supports the conjecture
of strong universality �48� for the direct energy cascade of
three-dimensional turbulence and the inverse energy cascade
of two-dimensional turbulence. However, it definitely rules
out strong universality for the downscale enstrophy cascade.
Because the argument relies on the hypothesis that the fusion
rules hold for the downscale enstrophy cascade and the in-
verse energy cascade, it is not completely rigorous. On the
other hand, the hypothesis can be investigated by numerical
simulation. The p=2 fusion rule, which is the essential one
with respect to the locality argument, has been proven
�49–52� for the direct energy cascade of three-dimensional
turbulence, and there is further support by experiments
�53–58�. For the related problem of the passive scalar �59�,
the fusion rules have been proved for all p �60� and have also
been confirmed experimentally �61,62�. The problem of two-
dimensional turbulence is similar enough to both problems to
make the hypothesis plausible.

From a more philosophical point of view, one can say that
the scaling relations implied by the fusion rules are in fact a
generalized definition of the physical concept of a “cascade.”
As has been pointed out previously �43�, from a physical
standpoint, the fusion rules mean that the large scales are
correlated with the small scales in a very particular way
where the self-similarity characteristics of the flow at the
small scales “forget” the ongoing physical processes at the
large scales �and vice versa for the inverse cascade� which
leads to universal scaling. The present argument then estab-
lishes the consistency between locality and the scale correla-
tions needed for universality. The conditions needed for this
consistency are necessary conditions for the existence of the
cascades themselves.

The paper is organized as follows. Section II reviews the
generalized balance equations of the generalized unfused
correlation tensors, the emphasis being on distinguishing the
sweeping interactions from the local interactions. Section III
introduces and motivates our revisions of the Frisch frame-
work of hypotheses as the first step towards a theory of two-
dimensional turbulence. The main idea is replacing the
anomalous sink hypothesis with a universality hypothesis,
which implies the fusion rules hypothesis. In Sec. IV, we
extend and generalize the locality proof of L’vov and Pro-
caccia �43� to the cascades of two-dimensional turbulence. In
Sec. V, we then turn to the question of cascade stability, with
respect to random Gaussian forcing. We find that the inverse
energy cascade is stable, but that the enstrophy cascade is
only borderline stable, with stability improving as the down-
scale energy flux is taken to zero. Section VI discusses vari-
ous subtleties that arise from our investigation regarding the
concept of locality. Some technical matters are relegated to
the appendixes.
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II. THE GENERALIZED BALANCE EQUATIONS

We now begin by reviewing the theory of the generalized
balance equations. These equations were first derived by
L’vov and Procaccia �43� and they are the foundation of
previous work �39,40,47� as well as this paper. The two fea-
tures of the balance equations that we would like to stress in
this paper are the separation of the interaction term into local
interactions and sweeping interactions, and the fact that the
forcing term can be written in closed form for the case of
Gaussian forcing. We also derive the balance equations that
govern the generalized structure functions of the vorticity.

A. Preliminaries

The governing equations of two-dimensional turbulence
are

�u�

�t
+ u���u� = − ��p + Du� + f�, �2�

��u� = 0, �3�

where f� is the forcing term, and D is the dissipation opera-
tor given by

D � �− 1��+1	��2� + �− 1�m+1��−2m. �4�

Here the integers � and m describe the order of the dissipa-
tion mechanisms, and the numerical coefficients 	� and � are
the corresponding viscosities. D is the overall dissipation
operator. The case �=1 corresponds to standard molecular
viscosity. The term f� represents stochastic forcing that in-
jects energy into the system at a range of length scales in the
neighborhood of the integral length scale l0. The term
��−2mu� describes a dissipation mechanism that operates on
large-scale motions. The operator �−2m represents applying
the inverse Laplacian �−2 repeatedly m times. In Fourier
space this operator is diagonalized, and its definition may
therefore be extended to fractional values for m. The same
holds for the parameter �.

To eliminate pressure we multiply both sides of the
Navier-Stokes equation with the operator P���
��

−�����−2 and we employ P��u�=u� and P����=0 to obtain

�u�

�t
+ P�����u�u�� = Du� + P��f�. �5�

The operator P�� can be expressed in terms of a kernel
P���x� as

P��v��x� =� dyP���x − y�v��y� �6�

=� dyP���y�v��x − y� . �7�

For two-dimensional turbulence P���x� is given by

P���x� = 
��
�x� −
1

2�
�
��

r2 − 2
x�x�

r4 � . �8�

The scalar vorticity � is given by �=����u� with �� the
Levi-Civita tensor in two dimensions. From the incompress-
ibility condition ��u�=0 it follows that there is a function �,
called the stream function, such that u�=�����. Using the
identity ����=
�� one then shows that �=���������
=�2� from which we get �=�−2� and u�=�����−2�.

The vorticity equation is obtained by differentiating �
with respect to time and employing the Navier-Stokes equa-
tions

��

�t
+ J��,�� = D� + g , �9�

where J�� ,�� is the Jacobian defined as

J�A,B� = �����A����B� , �10�

and g=����f� is the forcing term. The nonlinear term J
�J�� ,�� has been obtained by employing the following ar-
gument

J = ����P���
�u�u
� = �����u���u�� , �11�

=u���� + �����u�����u�� , �12�

=u���� = J��,�� . �13�

The term �����u�����u�� represents vortex stretching, but in
two dimensions it can be shown that

�����u�����u�� = 0, �14�

by direct substitution of the vector components.

B. The balance equations

To write equations concisely, we introduce the following
notation to represent aggregates of position vectors

X = �x,x�� , �15�

	X
n = 	X1,X2, . . . ,Xn
 , �16�

	X
n
k = 	X1, . . . ,Xk−1,Xk+1, . . . ,Xn
 . �17�

We use the notation 	X
n+�x as a shorthand to represent
shifting all the constituent vectors of 	X
n by the same dis-
placement �x. Similarly, �	X
n represents taking the scalar
product of � with every vector in 	X
n. Finally, the notation
�	X
n � �R means that all point to point distances in the ge-
ometry of velocity differences 	X
n have the same order of
magnitude R. And, the notation �	X
n � � �	Y
n� means that
all the point to point distances in 	Y
n are much larger than
all the point to point distances in 	X
n.

Let w��x ,x� , t� be the Eulerian velocity differences

w��x,x�,t� = u��x,t� − u��x�,t� . �18�

The Eulerian one-time fully unfused correlation tensors are
formed by multiplying n velocity differences w��x ,x� , t�
evaluated at 2n distinct points
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Fn�	X
n,t� =��
k=1

n

w�k
�Xk,t��� . �19�

When all velocity differences share one point in common,
that is x�k=x0, we say that the correlation Fn is partially
fused.

The generalized balance equations can be derived by dif-
ferentiating Fn with respect to t and substituting the Navier-
Stokes equations �see Appendix A for details�. This yields
the equations

�Fn

�t
+ OnFn+1 + In = DnFn + Qn. �20�

Here Dn is the differential operator representing dissipation,
given by

Dn = �
k=1

n

�	��xk

2� + �x�k

2� � + ���xk

−2m + �x�k

−2m�� , �21�

and On is the linear integrodifferential operator such that

�OnFn+1��	x,x�
n,t� =� On�	X
n,	Y
n+1�Fn+1�	Y
n+1,t�d	Y
n+1 �22�

=�
k=1

n

Dkn�	x,x�
n,t� = Dn�	x,x�
n,t� , �23�

where Dkn is given by

Dkn
�1�2¯�n�	x,x�
n,t� =

1

2n
�
l=1

n � dyP�k��y�Dknl
�1�2¯�k−1�¯�n�	x,x�
n,y,t� , �24�

with Dknl=Dknl1+Dknl2+Dknl3+Dknl4 and

Dknl1
�1¯�k−1��k+1¯�n�	x,x�
n,y,t� = ��n+1,xk

Fn+1
�1¯�k−1��k+1¯�n+1�	Xm
m=1

k−1 ,xk − y,x�k − y,	Xm
m=k+1
n ,xk − y,xl� , �25�

Dknl2
�1¯�k−1��k+1¯�n�	x,x�
n,y,t� = ��n+1,xk

Fn+1
�1¯�k−1��k+1¯�n+1�	Xm
m=1

k−1 ,xk − y,x�k − y,	Xm
m=k+1
n ,xk − y,x�l� , �26�

Dknl3
�1¯�k−1��k+1¯�n�	x,x�
n,y,t� = ��n+1,x�k

Fn+1
�1¯�k−1��k+1¯�n+1�	Xm
m=1

k−1 ,xk − y,x�k − y,	Xm
m=k+1
n ,x�k − y,xl� , �27�

Dknl4
�1¯�k−1��k+1¯�n�	x,x�
n,y,t� = ��n+1,x�k

Fn+1
�1¯�k−1��k+1¯�n+1�	Xm
m=1

k−1 ,xk − y,x�k − y,	Xm
m=k+1
n ,x�k − y,x�l� . �28�

The term In represents the sweeping interactions, and it is given by

In
�1�2¯�n�	x,x�
n,t� = �

k=1

n

���,xk
+ ��,x�k

�U��	xk,x�k
n,t���
l=1

n

w�l
�xl,x�l,t��� , �29�

where U��	xk ,x�k
n , t� is the generalized mean velocity

U��	z,z�
n,t� =
1

2n
�
k=1

n

�u��zk,t� + u��z�k,t�� . �30�

The term Qn represents the forcing term f� and it reads

Qn�	X
n,t� = �
k=1

n

Qkn�	X
n
k,Xk,t� , �31�

where Qkn reads

Qkn
�1�2¯�n−1��	X
n−1,Y,t� �32�

=��
k=1

n−1

w�k
�Xk,t�����Y,t�� , �33�

with ���X , t�= f��x , t�− f��x� , t�.

C. Balance equations for the vorticity

A similar set of equations can be derived for the general-
ized structure functions of the vorticity. Let q�x ,x� , t� be the
vorticity difference defined as

q�x,x�,t� = ��x,t� − ��x�,t� �34�
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=�����,x + ��,x��w��x,x�,t� , �35�

and let Vn�	X
n , t� be the generalized structure function of
the vorticity defined as

Vn�	X
n,t� =��
k=1

n

q�Xk,t��� . �36�

It is easy to see that the vorticity generalized structure func-
tions are related to the velocity generalized structure func-
tions by

Vn�	X
n,t� �37�

=�
k=1

n

��k�k
���k,xk

+ ��k,x�k
��Fn

�1¯�n�	X
n,t� . �38�

Let Tn be an abbreviation for the differential operator that
transforms Fn to Vn such that Vn=TnFn.

The balance equations for Vn and be derived easily by
applying the operator Tn on the balance equations for Fn. The
result is

�Vn

�t
+ TnOnTn+1

−1 Vn+1 + In = DnVn + Qn. �39�

Here Qn is the forcing term and In is the sweeping term. The
forcing term reads

Qn�	X
n,t� = �
k=1

n

Qkn�	X
n
k,Xk,t� , �40�

Qkn�	X
n
k,Y,t� =��

k=1

n−1

q�Xk,t��g�Y,t�� . �41�

To calculate the sweeping term we use Eq. �14� to cancel
the vortex tilting contributions. With a little bit of algebra we
find that

In�	X
n,t� = �
j=1

n

��j�j
���j,xj

+ ��j,x�j
���

k=1

n

���,xk
+ ��,x�k

�

�U��	xk,x�k
n,t���
l=1

n

w�l
�xl,x�l,t��� �42�

=�
k=1

n

���,xk
+ ��,x�k

�

�U��	xk,x�k
n,t���
l=1

n

q�xl,x�l,t��� . �43�

The trick is to apply the operators �j�j
���j,xj

+��j,x�j
� one

by one onto the ensemble average in Eq. �42�, wherein n
−1 of the w�l

factors are constant for j� l with respect to
xl ,x�l, and use the identity �������u�u��=u���� on the w�j
and U� factors that are both x j ,x�j dependent. Each applica-
tion of these operators effectively converts each w�l

factor
into a corresponding q�xl ,x�l , t� factor. The exact mathemati-

cal form of the term TnOnTn+1
−1Vn+1 is not required. It is only

sufficient to note that once it is shown that the expression
OnTn+1

−1Vn+1=OnFn+1 is local, then it easily follows that the
term TnOnTn+1

−1Vn+1 is also local since Tn is a linear differen-
tial operator.

III. THE THEORETICAL FRAMEWORK

Both the K41 theory for three-dimensional turbulence,
and the KLB theory for two-dimensional turbulence are
based on a dimensional analysis argument. However, Frisch
�63,64� has suggested that Kolmogorov’s second paper �2�
leads to the following more rigorous reformulation of the
dimensional analysis argument, based on the following three
hypotheses H1: At small scales and away from any bound-
aries, the velocity field is incrementally homogeneous and
incrementally isotropic; H2: Under the same conditions, the
velocity field is self-similar at small scales, thereby possess-
ing a unique scaling exponent h; H3: the turbulent flow has a
nonvanishing mean dissipation rate in the limit of infinite
Reynolds number �i.e., an anomalous energy sink�. Then, one
uses H1 and H3 to derive the 4 /5 law which implies that h
=1 /3, and from H2 the scaling for all structure functions and
the energy spectrum is deduced.

In a recent paper, Frisch �65� questioned the self-
consistency of the assumption of local and incremental ho-
mogeneity. The argument essentially is that it is not obvious
whether the nonlinearity of the Navier-Stokes equations will
preserve incremental homogeneity unless the initial condi-
tion is globally homogeneous. In a previous paper �47� I
have argued that incremental homogeneity will be preserved
in the upscale and downscale inertial ranges only if the
sweeping interactions, represented by the In term of the bal-
ance equations, can be neglected in the inertial range. As I
have emphasized in that paper, this condition on the In term
is necessary for the very existence of an inertial range. Here
we will simply take it for granted in order to focus our at-
tention on the other needed conditions.

Within the Frisch framework, many theoretical ap-
proaches to three-dimensional turbulence that try to predict
the intermittency corrections to the scaling exponents of the
structure functions, can be interpreted as extensions of the
Frisch theory where the self-similarity assumption H2 is
weakened while the other two assumptions H1 and H3 are
tolerated. It is an easy exercise to reformulate the dimen-
sional analysis argument of the KLB theory in a similar man-
ner. However, a theory along these lines would already take
for granted the locality and universality of the two cascades.
Contrary to the situation in three-dimensional turbulence,
what we must understand are the conditions needed to satisfy
universality and locality. In previous work �39,40� we have
proposed that the questions of locality and universality can
be probed more rigorously by adapting the theoretical work
of L’vov and Procaccia et al. �41–46,52� to two-dimensional
turbulence. We will now expand further on this idea on the
remainder of the present paper.

A. Revisions to the Frisch framework

We propose that the Frich framework of hypotheses
should be revised as follows. First, we adopt Frisch’s H1 to
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our formulation. We have shown previously �47� that a stron-
ger homogeneity hypothesis is needed to eliminate the
sweeping interactions before deriving the 4 /5 law. Though
we may circumvent this problem by postulating that stronger
assumption of homogeneity for our framework, we believe
that it is desirable to be able to establish the stronger hypoth-
esis from first principles �see Sec. 5 of Ref. �47��.

Second, to allow for intermittency corrections, it is nec-
essary to relax the self-similarity hypothesis H2. One possi-
bility is the space-time self-similarity assumption, used in the
early papers of the quasi-Lagrangian diagrammatic theory
�66,67�. It was shown later that this assumption is false, be-
cause it axiomatically implies Kolmogorov scaling and for-
bids intermittency corrections �44,68�, thus leading to a self-
inconsistent theory. The successful proposal is space one-
time self-similarity, defined below, and we shall adopt it in
this paper.

Third, following L’vov and Procaccia �41–43�, we adopt a
hypothesis of universality. Its purpose is to replace the ad hoc
assumption of anomalous sinks. The universality hypothesis
itself claims that statistical symmetries are recovered at
length scales away from the forcing range even when the
ensemble is constrained by a symmetry-breaking condition at
scales closer to the forcing scale. Taking the ideas above into
consideration, we postulate the following hypotheses for
both the enstrophy and energy inertial ranges.

Hypothesis 1. The velocity field is incrementally station-
ary, incrementally homogeneous, and incrementally isotro-
pic, defined as

�Fn�	X
n,t�
�t

= 0, ∀ t � R , �44�

�
k=1

n

���k,xk
+ ��k,x�k

�Fn�	X
n,t� = 0, �45�

Fn�	X
n,t� = Fn„r0 + A�	X
n − r0�,t…, ∀ A � SO�2� .

�46�

as long as the evaluations 	X
n, 	X
n+�r, r0+A�	X
n−r0�,
lie within an inertial range.

Hypothesis 2. The velocity field is self-similar in the sense
that for every evaluation 	X
n within an inertial range

∃ � 0:Fn��	X
n,t� = ��nFn�	X
n,t�, ∀ � � �1 − ,1 + � .

�47�

For the hypothesis of universality, we define the conditional
correlations

�n�	X
n,	Y
m,	wk
k=1
m ,t�

=���
k=1

n

w�k
�Xk,t���w�xk,x�k,t� = �wk�� , �48�

and use them to formulate the additional hypothesis that in
the inertial range, the conditional correlations �n essentially
honor the same symmetries as the unconditional correlations
Fn, in the asymptotic limit where �	Y
m� are situated between
�	X
n� and the forcing scale l0.

Hypothesis 3. Let 	X
n and 	Y
m represent the geometries
of velocity differences and let W=W�	Y
m , 	wk
k=1

m �. Then, if
in the direct cascade they satisfy �	X
n � � �	Y
m � � l0, or
alternatively if in the inverse cascade they satisfy �	X
n �
� �	Y
m � � l0, then the conditional correlations �n preserve
incremental stationarity, incremental homogeneity, and in-
cremental isotropy, with respect to 	X
n, defined as

��n

�t
= 0, �49�

�
k=1

n

���k,xk
+ ��k,x�k

��n�	X
n,	Y
m,	wk
k=1
m ,t� = 0, �50�

�n�	X
n,	Y
m,	wk
k=1
m ,t�

= �n„r0 + A�	X
n − r0�,	Y
m,	wk
k=1
m ,t…, ∀ A � SO�2� ,

�51�

and also self-similarity, with the same scaling exponents �n,
defined as

∃ � 0:�n��	X
n,	Y
m,	wk
k=1
m ,t�

= ��n�n�	X
n,	Y
m,	wk
k=1
m ,t�, ∀ � � �1 − ,1 + � .

�52�

Hypothesis 1 is essentially the first hypothesis in the
Frisch formulation. Hypothesis 2 is the space one-time self-
similarity principle introduced by L’vov and Procaccia �43�
in the context of three-dimensional turbulence. The scaling
exponents �n represent the scaling structure of each inertial
range. If 0��2�2, then the energy spectrum follows a
power law given by E�k��k−1−�2 �64�. If there is a logarith-
mic correction, then the result also holds for �2=2. Hypoth-
esis 3 states that the statistics of the velocity field at a certain
scale still maintain the symmetries stated in hypotheses 1 and
2 even when a symmetry-violating constraint is imposed via
a conditional average at scales closer to the forcing scale.
The constituent statements of hypothesis 3 shall be referred
to as universal incremental homogeneity, universal incre-
mental isotropy, and universal self-similarity. Note that hy-
pothesis 3 is essentially a more careful reformulation of the
assumption of “weak universality” that was proposed previ-
ously by L’vov and Procaccia �41,43�. The underlying idea is
that the condition w�xk ,x�k , t�=wk in the definition of the
conditional correlations �n partitions the ensemble of all
possible forcing histories consistent with the overall forcing
spectrum and the stationarity assumption into subensembles
defined by the parameters 	wk
k=1

m . Each choice of 	Y
m rep-
resents a distinct partition of the entire ensemble into suben-
sembles. The assumption for the statistical behavior of the
velocity field is that it remains invariant accross each suben-
semble of forcing histories for all subensemble partitions
	Y
m �with �	X
n�� �	Y
m�� l0 if it is a downscale cascade
or �	X
n � � �	Y
m�� l0 if it is an upscale cascade�, and thus
dependent only on the overall forcing spectrum.
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B. The fusion rules hypothesis

The immediate consequence of the universality hypoth-
esis is the fusion rules, whose physical interpretation is that
different length scales are correlated �a hint of the cascade
process� and that the governing interactions, as we shall
show in the next section, are local �a consequence of both the
fusion rules and the structure of the Navier-Stokes equa-
tions�. In a forthcoming paper, we will show that the fusion
rules also govern the location of the dissipation length scales
and that, in doing so, they provide anomalous energy and
enstrophy sinks.

Consider a geometry of velocity differences 	X
n such
that all point to point distances have order of magnitude 1,
and define

Fn
�p��r,R� = Fn�r	Xk
k=1

p ,R	Xk
k=p+1
n � . �53�

The function Fn
�p��r ,R� reflects the case where p velocity

differences have separations with order of magnitude r, and
n− p velocity differences have separations with order of
magnitude R. The case of interest is when the evaluation
�r	Xk
k=1

p ,R	Xk
k=p+1
n � is within the inertial range Jn� �R2�2n

and r�R. The fusion rules give the scaling properties of Fn
�p�

in terms of the following general form:

Fn
�p���1r,�2R� = �1

�np�2
�n−�npFn

�p��r,R� . �54�

Since Fn is defined as the product of velocity differences we
expect the limits �1→0 and �2→0 to converge. This implies
that �np�0 and �n−�np�0. A concise statement of the fusion
rules hypothesis is that for the direct enstrophy cascade �np
=�p, and for the inverse energy cascade �np=�n−�n−p for 1
� p�n−1. The cases p=1 and p=n−1 require some addi-
tional considerations, and can be deduced, as it turns out,
from the p=2 fusion rule �see Sec. IV A�. We will also con-
sider the case of “regular” violations to the fusion rules
where the scaling exponents �np satisfy 0��np��n, so that
the exponents on �1 and �2 are both positive.

We will now briefly review the argument of L’vov and
Procaccia �43� that that the fusion rules hypothesis is an im-
mediate consequence of the universality hypothesis. Let us
consider first the case of the direct enstrophy cascade. For
the case 2� p�n−2 we will show that for �	X
n�� �	Y
n�
the fusion scaling is

Fn��	X
p,�	Y
n−p� = ��p��n−�pFn�	X
p,	Y
n−p� . �55�

Let P�	X
n , 	wk
k=1
n � be the probability for the event

w�xk ,x�k , t�=wk. It follows that

Fn��	X
p,�	Y
n−p� =� ��
k=1

n−p

wk�P��	Y
n−p,	wk
k=1
n−p��p��	X
p,�	Y
n−p,	wk
k=1

n−p��
k=1

n−p

dwk �56�

=��p� ��
k=1

n−p

wk�P��	Y
n−p,	wk
k=1
n−p��p�	X
p,�	Y
n−p,	wk
k=1

n−p��
k=1

n−p

dwk �57�

=��pFn�	X
p,�	Y
n−p� . �58�

The factor Fn�	X
p ,�	Y
n−p� is now independent of � and has to scale as ��n−�p.
For the case of the inverse energy cascade, again for 2� p�n−2 and under the same limit �	X
n�� �	Y
n� the fusion

scaling is

Fn��	X
p,�	Y
n−p� = ��n−�n−p��n−pFn�	X
p,	Y
n−p� . �59�

We show this with a similar argument as follows:

Fn��	X
p,�	Y
n−p� =� ��
k=1

p

wk�P��	X
p,	wk
k=1
p ��n−p��	Y
n−p,�	X
p,	wk
k=1

p ��
k=1

p

dwk �60�

=��n−p� ��
k=1

p

wk�P��	X
p,	wk
k=1
p ��n−p�	Y
n−p,�	X
p,	wk
k=1

p ��
k=1

p

dwk �61�

=��n−pFn��	X
p,	Y
p� . �62�

The factor Fn��	X
p , 	Y
n−p� is now independent of � and
has to scale as ��n−�n−p.

We would like now to briefly discuss the motivation be-
hind our conjecture that the enstrophy cascade and the in-

verse energy cascade satisfy the fusion rules. First, it should
be noted that for the locality proof given in Sec. IV we only
need the fusion rule for the cases p=2 and p=n−2, from
which one then derives the scaling for the cases defined in
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Figs. 1 and 2. For the energy cascade of three-dimensional
turbulence the p=2 fusion rule has been demonstrated by
Feynman diagram analysis �49–52�. The proof indicates that
the fusion rule essentially follows from the assumption that
the scaling exponent �2 is universal and does not change in
response to perturbations to the forcing statistics. This as-
sumption rests on less solid ground for the enstrophy cas-
cade, however, we can expect it to be true at least in the
experimental situations where the cascade actually exists. It
is also worth noting that this assumption is weaker than our
hypothesis of universality, which in some regard is a stronger
assumption than what is really needed.

There is another consideration that strongly motivates our
conjecture: the p=2 fusion rule controls the positioning of
the dissipation length scale �42,43,54�. In a forthcoming pa-
per we will show that if this fusion rule is violated, then the
dissipation length scale would not be correctly positioned to
dissipate the injected energy or enstrophy. Consequently, it is
not easy to reconcile the numerical observation of both cas-
cades with a violation of the fusion rule p=2. Furthermore, a
situation where the p=2 rule is satisfied and the other rules
are violated is unlikely. Finally, in two-dimensional turbu-
lence, due to the smaller dimensionality of the problem, we
are afforded the opportunity to test of validity of the fusion
rules directly with a numerical simulation.

C. Symmetries and the balance equations

The assumptions that we have put forth are not self-
evident axioms but hypotheses. Thus, the goal of theory is
not only to derive conclusions from these assumptions but to
also work in the opposite direction and give reasons that
justify the assumptions themselves.

The argument that was given by Frisch �63,64� begins
with the observation that the unforced Navier-Stokes equa-
tions are invariant with respect to space and time shifts and
rotations

�t,x,u� → �t,x + �x,u�, ∀ x � Rd, �63�

�t,x,u� → �t,Ax,Au�, ∀ A � SO�d� , �64�

�t,x,u� → �t + �t,x,u�, ∀ �t � R . �65�

Furthermore, if we ignore the dissipation terms, then the
Navier-Stokes equations are also invariant with respect to the
following self-similar transformation

�t,x,u� → ��1−ht,�x,�hu�, ∀ � � R+, h � R . �66�

In hydrodynamic turbulence these symmetries are obviously
broken by the forcing term, the boundary conditions, and the
self-similarity symmetry by the dissipation terms. Frisch
�63,64� hypothesized that these symmetries will be statisti-
cally reinstated in the inertial range when the flow is gov-
erned by a strange attractor. The big question is: how do we
prove this? We believe that the generalized balance equa-
tions, derived in the previous section, are the proper theoret-
ical framework within which this question can be addressed.

We begin by accepting the assumption of local stationar-
ity for the reasons given by Frisch �63,64�. Then, the balance
equations read

OnFn+1 + In = DnFn + Qn. �67�

As was pointed out previously �44,69�, the advantage of us-
ing generalized structure functions where every velocity dif-
ference is associated with two distinct coordinates that are
different from any other velocity difference, is that in the
limits 	→0+ and �→0+ the dissipation terms can be
dropped. This is not possible for the standard structure func-
tions where every velocity difference is associated with the
same two coordinates. We show this by using the mean-value
theorem to bound DnFn as follows:

�DnFn� � � C1	

Rmin
2� + C2�Rmax

2m ��Fn� . �68�

Here, C1 and C2 are constants independent of 	 and �, and

Rmin � min	xk,x�k:k � N,1 � k � n
 , �69�

Rmax � max	xk,x�k:k � N,1 � k � n
 . �70�

It is easy to see that because all the differentiations can be
performed without invoking the product rule, the viscosities
	 and � multiply on a factor that remains finite in the limits
	→0+ and �→0+. Thus, �DnFn�→0 in the inertial range.

To reinstate the statistical symmetries we need a region of
length scales where Qn and In can also be ignored. Then, one
has the homogeneous equation OnFn+1=0, which remains
invariant both under local homogeneity and local isotropy. In
fact, it is also known �44,45� that the homogeneous equation
is invariant under the following similarity transformation:

	X
n → �	X
n, Fn → �nh+Z�h�Fn, �71�

consequently, it is expected to have solutions in the general
form

x1 = x2

x′
1

x′⇐
2

r
R

FIG. 1. The p=1 fusion rule geometry with type-B fusion. Here
we take the limit r�R with r and R both in the inertial range. In
type-B fusion, the small velicity difference shares an end point with
one of the large ones, i.e., x1=x2.

r

R

�

FIG. 2. The p=n−1 fusion rule geometry with a type-B fusion.
This is a composite rule where we take the limits l�R and r�R.
The velocity difference associated with l shares an end point with
the velocity difference associated with R.
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Fn =� d��h�Fn,h, �72�

where Fn,h are the zero modes of the operator On which scale
as

Fn,h��	X
n,t� = �nh+Z�h�Fn,h�	X
n,t� . �73�

Note that the same result can also be obtained from the mul-
tifractal hypothesis �64�. On a large inertial range, the lead-
ing contribution to Fn is asymptotically self-similar with the
scaling exponent �n given by

�n = min
h

�nh + Z�h�� . �74�

For the case of a multifractal stochastic velocity field with
D�h� defined as the fractal dimension of the set of points that
support a local Hölder exponent h, the relationship between
Z�h� and D�h� is Z�h�=d−D�h�, where d is the dimension
of the velocity field and d=2 for two-dimensional turbu-
lence.

It has been suggested, for the case of three-dimensional
turbulence, that the scaling exponents �n can be calculated
from the solvability condition of the homogeneous equation
OnFn+1=0 �44,45,70�. Although, from a practical standpoint,
perturbative methods have been more effective �71,72�, the
solvability condition analysis reveals the underlying prin-
ciple governing the origin of the scaling exponents �n. From
a physical standpoint, the condition OnFn+1=0 includes �for
n=2� and extends �for n�2� the requirement of a “constant”
�in the asymptotic sense� energy flux in the inertial range.
The extension makes the condition powerful enough to lock
down all the scaling exponents �n, as was demonstrated by
Belinicher et al. �70�. As we have shown in a previous paper
�39�, the problem with extending this argument to two-
dimensional turbulence is that the scaling exponents �n of the
enstrophy cascade are not nontrivial solutions to the equation
OnFn+1=0. This should not surprise us, that we cannot obtain
the scaling exponents of the enstrophy cascade from an “ex-
tended” constant energy flux condition. What must be done
instead is to use the equation

TnOnFn+1 = 0, �75�

obtained by the generalized balance equations for the vortic-
ity structure functions derived previously in Sec. II C. This
equation represents an “extended” constant enstrophy flux
condition, and it yields two solutions for the scaling expo-
nents, instead of just one: an energy cascade solution that
transfers energy but not enstrophy �the nontrivial solution of
OnFn+1=0 and it also satisfies TnOnFn+1=0 trivially because
it does not transfer enstrophy�, and an enstrophy cascade
solution that transfers enstrophy but not energy �the non-
trivial solution of TnOnFn+1=0 and it also satisfies OnFn+1
=0 trivially because it transfers no energy�. It also follows
from the mathematical structure of Eq. �75� that these two
solutions can be superimposed linearly to obtain a composite
solution that transfers both energy and enstrophy. The possi-
bility and implications of such a composite solution has been
discussed in previous papers �39,40,73,74�, and will not con-
cern us further in this paper.

These observations show that a constructive point of view
is to see our hypotheses 1, 2, and 3 as an efficient definition
of the concept of an “inertial range,” in a generalized sense.
Obviously, the hypotheses are valid only on a multidimen-
sional domain of velocity differences geometries 	X
n�Jn.
The extent of this domain Jn is the extent of the inertial
range itself. A one-dimensional interval of length scales
where the structure functions exhibit power law scaling, is a
reduction of the domain Jn in which information is lost. For
the case of dual cascade, we have an upscale range and a
downscale range, and a different set of scaling exponents �n
and region Jn is associated with each range. To determine
the extent of the region Jn for the energy and enstrophy
ranges we employ the theory of the generalized balance
equations, combined with the fusion rules hypothesis. More
rigorously, the domain Jn is the range of length scales where
the terms Qn, In, and DnFn in the generalized balance equa-
tion are negligible relative to the terms contributing to
OnFn+1. The first step towards determining the extent of the
domain Jn is to calculate, from our hypotheses, the scaling
exponents of the terms of the balance equations. Then these
terms can be compared against each other. We initiate this
study in the next two sections of this paper. Note that it is
sufficient to study in this manner only the balance equations
for the velocity field. Since the operator Tn is a strictly dif-
ferential operator, it is also local, therefore the scaling expo-
nents of the terms of the vorticity balance equations are
equal to the the scaling exponents of the terms of the velocity
balance equations minus 1. So, the scaling exponents for
pairwise ratios of the terns against each other are the same
for both balance equations.

IV. LOCALITY OF THE INTERACTION TERM

We will now show that the p=2 fusion rule and p=n−2
fusion rule combined with incremental homogeneity and in-
compressibility, implies that the nonlinear interactions in the
inertial range are local. From the viewpoint of the general-
ized balance equations, the nonlinear interactions are ac-
counted for by the integral in the term OnFn+1, and the
sweeping interactions by the term In, which we assume, for
now, that it is negligible in the inertial range �see Ref. �47�
for further discussion�. We say that the integral is local if it is
convergent and furthermore if the dominant contribution to
the integrals in OnFn+1 comes from the region in which the
separation of the integral variable y from all other points has
the same order of magnitude as 	X
n�R. Locality implies
that the contributions Dkn to OnFn+1are also self-similar with
scaling exponent 
n and satisfy

Dkn��	X
n,t� = �
nDkn�	X
n,t� , �76�

where 
n is given by 
n=�n+1−1. We propose that the local-
ity of the interaction integral in Dkn is the mathematical defi-
nition that corresponds most closely to the kind of locality
that is required to enable an eddy cascade with universal
scaling. In the sense of our proposed definition, we will
show that both the energy and enstrophy cascade of two-
dimensional turbulence are local.

The proof given in this section is based on a previous
proof by L’vov and Procaccia given in Sec. IV C of Ref.
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�43�. The same argument is also presented in the appendix of
Ref. �69�. We have generalized their proof in two directions:
first, we derive the explicit conditions needed for locality
even for the case where the fusion rules do not hold; second,
we extend the proof to the case of the inverse energy cas-
cade.

A. Preliminaries

It can be seen from Eqs. �24�–�28� that the general form
of the terms that contribute to Dkn involves an integral of the
form

I =� dyP�k��y���,xk� �
l=1,l�k

n

w�l
�Xl��w��xk − y,x�k

− y�w��xk − y,s�� , �77�

where s can be any point among x1 , . . . ,xn or x�1 , . . . ,x�n.
The locality proof requires the scaling of Fn in the limits y
→0, xk−y→xl or x�l, x�k−y→xl or x�l, and �= �y�→�.
Consequently, we need the fusion rules for the geometries
shown in Figs. 1 �case p=1� and 2 �case p=n−1�. Both can
be derived from the fusion rules for the cases p=2 and p
=n−2.

�a� For the case p=1 where we also assume a type-1B
fusion �i.e., x1=x2, and see Fig. 1� the governing fusion rule
is

Fn � �r/R��2R�n �downscale� , �78�

Fn � �r/R��n−�n−2R�n �upscale� . �79�

To show this, we note that

w�x2,x�2� = w�x2,x�1� + w�x�1,x�2� , �80�

=w�x1,x�1� + w�x�1,x�2� . �81�

For the last step, we used x1=x2. Let Y = �x�1 ,x�2�. Then

Fn�	X
n� = Fn�X1,X2,	X
k=3
n � �82�

=Fn�X1,X1,	X
k=3
n � + Fn�X1,Y,	X
k=3

n � . �83�

The third term is the same fusion problem as the first term
because X1 and Y share the point x�1, and from the universal
isotropy hypothesis we can rotate the legs r and R in Fig. 1
with respect to each other so that the three points form an
isosceles triangle. Then one problem can be obtained from
the other problem by reflection around the triangle’s axis of
symmetry. Consequently, both problems scale according to
the second term, which is a p=2 fusion. In the proof below,
we will use the generalized scaling

Fn � �r/R��n,2R�n, �84�

which is applicable both upscale and downscale.
�b� For p=n−1 with type-B fusion, we have n−2 velocity

differences of order r, one velocity difference of order l with
one endpoint attached to a velocity difference of order R,

where l�R and r�R. Note that this fusion can be composed
as follows. Begin with all velocity differences at order R.
Then take the following limits: �l1� Shrink one velocity dif-
ference to order l�R with one endpoint attached to another
velocity difference �this is the previous case�; �l2� Shrink all
other n−2 velocity differences down to order r�R. Thus, we
have, for the downscale case,

Fn � � l

R
��2� r

R
��n−2

R�n �85�

�l�2r�n−2R�n−�n−2−�2. �86�

The first limit �l1� gives the first factor �l /R��2, and the sec-
ond limit �l2� gives the second factor �r /R��n−2. Similarly, for
the upscale case, using the exact same limits �l1� and �l2�, we
find

Fn � � l

R
��n−�n−2� r

R
��n−�2

R�n �87�

�l�n−�n−2r�n−�2R�2+�n−2−�n. �88�

In the proof below, we will use the generalized scaling

Fn � � l

R
��n,2� r

R
��n,n−2

R�n. �89�

B. UV locality

UV locality requires convergence in the limits y→0, xk
−y→xl or x�l, and x�k−y→xl or x�l. The only limit that
requires serious consideration is the first where P���y� is
singular. For this case we distinguish the following two sub-
cases.

�a� Assume that xk�s. The derivative of the ensemble
average in Eq. �77� is analytic in y→0, so we Taylor expand
it around y=0:

I =� dyP�k��y��A� + B��y� + C��
y�y
 + ¯ � . �90�

The first term vanishes by incompressibility. The second
term vanishes because the integral is odd with respect to y,
from the local isotropy hypothesis, whereas P�k��y� is even.
The third integral is local. Use dy=� d� d��A� with �= �y�,
A�SO�2�, and d��A� the measure of two-dimensional
spherical integration. The third integral then reads

I3 =� d�� d��A��P�k��y�C��
y�y
 �91�

��
0+

d� ��−2�2 � �
0+

d� � � �2, �92�

and it is unconditionally local
�b� Assume xk=s. Then the integral reads
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I =� dyP�k��y���,xk� �
l=1,l�k

n

w�l
�Xl��w��xk − y,x�k

− y�w��xk − y,xk�� , �93�

and in the limit y→0 we have the velocity difference geom-
etry shown in Fig. 3. From the p=1 fusion rule with type-1B
fusion, the ensemble average in the integral scales as Fn+1
��� /R��n+1,2R�n+1. The integral then scales as

I � �
0+

d� ��−2�−1��n+1,2 � �
0+

d� ��n+1,2−2. �94�

Here, the spherical integral contributes the factor �, the pro-
jection operator P�k��y� contributes �−2, the derivative ��,xk
contributes �−1 �because the x dependent factor depends only
on the smallest in separation of the two velocity differences
in Fig. 3, which makes that factor dependent only on ��, and
the fusion rule contributes ��n+1,2. The resulting integral is
marginally local for �n+1,2=�2=2 �enstrophy cascade� and
nonlocal for �n+1,2=�2=2 /3 �downscale energy cascade in
3D�. However, note that the type-1B fusion rule for the case
p=1, which we have used here, is written in more detail as

Fn+1 � �w��xk − y,xk�w��xk − y,xk���n−1 �95�

��2�xk − y,xk,xk − y,xk��n−1, �96�

which allows the integral I to be rewritten as

I � �n−1� dyP�k��y���,xk
�2�xk − y,xk,xk − y,xk� .

�97�

Here we have used the fact that �n−1 is independent of both
�xk−y ,xk� and �xk−y ,x�k−y�, thus independent of xk, and
therefore it can be pulled out of the ��,xk

operator. It is easy
to see that the leading term of the �2 factor vanishes when
differentiated by ��,xk

by universal incremental homogeneity.
Thus, we get a cancellation that kills the leading contribution
and the integral then scales according to the next-order term

I � �
0+

d� ��n+1,2−1 � ��n+1,2. �98�

This integral is local if �n+1,2�0 �i.e., for locality we need
I→0 as �→0�. The result holds unconditionally, even under
a regular violation of the p=2 fusion rule, e.g., Fn+1
��� /R��n+1,2R�n+1 as long as �n+1,2�0 and some factorization
Fn+1��2�n−1 is still possible �that would be true for higher-
order terms, if the leading term should happen to vanish�.
Under the fusion rules hypothesis this condition is �2�0 for

a downscale cascade and �n+1−�n−1�0, ∀n�N− 	0,1
 for
an upscale cascade.

Consider finally the cases xk−y→xl or x�l, and x�k−y
→xl or x�l. We perform the integral spherically around the
value of y where one of these coincidences take place. Let �
be the distance between the two approaching points. Assume
any regular fusion rule of the form Fn+1��� /R��n+1,2R�n+1.
Now, the function P�k��y� is no longer singular so we gain a
factor of �2. Otherwise, the computation is the same as in the
previous case, and the integral scales as

I � �
0+

d� ��n+1,2+1 � ��n+1,2+2, �99�

which is local even under a regular violation of the p=2
fusion rule.

C. IR locality

Consider the limit �= �y�→�. The corresponding geom-
etry of velocity differences is shown in Fig. 4. For the down-
scale cascade we use the fusion rule for the case p=n−1,
defined in Fig. 2:

Fn+1 � � l

�
��n+1,2�R

�
��n+1,n−1

��n+1. �100�

Expanding around the point at infinity �→�, we get the
asymptotic expansion

Fn+1 � ��n+1−�n+1,2−�n+1,n−1�c0 + c1�−1 + c2�−2 + ¯ � .

�101�

The integral then scales as

I � ��

d� ��−2��n+1−�n+1,2−�n+1,n−1�c0 + c1�−1 + ¯ � .

�102�

Here, the spherical integral contributes the factor �, and the
projection operator contributes �−2. In this limit, the deriva-
tive ��,xk

does not contribute a factor of �−1, because the only
factor that can be xk dependent is the factor that gives
�l��n+1,2. This factor is dependent on l and independent of �,
again because l is the smallest distance. On the other hand,
the effect of the derivative ��,xk

is to vanish the �2 factor
altogether via an incompressibility cancellation. To see this,
note that the fusion rule corresponding to the geometry of
Fig. 4 gives

xk − y

xk

x′
k − y

γ
β

FIG. 3. UV limit for the case xk=s. We employ the fusion rule
shown in Fig. 1.

R

∼ ρ = ‖y‖

�

xk − y

x′
k − y

s γ β

FIG. 4. IR limit �y�→�. We employ the fusion rule shown in
Fig. 2.
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Fn+1 � �w��xk − y,x�k − y�w��xk − y,x�k − y���n−1

�103�

��2�xk − y,x�k − y,xk − y,x�k − y��n−1, �104�

and from the incompressibility condition we get the tensor
structure of �2 which is

�2 � ��2 + �n+1,2�
�� − �n+1,2
l�l�

l2 �l�n+1,2, �105�

with l= �xk−x�k�. The integral I can be rewritten as

I � �n−1� dyP�k��y���,xk
�2�xk − y,x�k − y,xk − y,x�k − y� .

�106�

Again, �n−1 is independent of xk and can be pulled out of the
derivative ��,xk

. However, differentiating with respect to xk

wiggles only one of two points �that is xk−y, but not x�k
−y�, which makes it, by chain rule, a derivative with respect
to l, which in turn vanishes due to the tensor structure of �2
above. As a result, we pick the factor c1�−1 from the next
order term, and the integral scales as

I � ��

d� ��n+1−�n+1,2−�n+1,n−1−1c1�−1 �107�

���n+1−�n+1,2−�n+1,n−1−1. �108�

The locality condition for this integral is �n+1−�n+1,2
−�n+1,n−1�0 and thus �n+1��n+1,2+�n+1,n−1. For a downscale
cascade, the fusion rules hypothesis gives the condition
�n+1��2+�n−1. For an upscale cascade, the fusion rules hy-
pothesis reads �np=�n−�n−p, therefore the condition now
reads �n+1��2+�n−1. The condition for locality is the same
as in the downscale cascade, but the direction of the inequal-
ity is reversed.

D. Summary

Let us now summarize what has been proved. We have
shown that for either a downscale or an upscale cascade the
locality conditions are

�n+1,2 � 0, ∀ n � N, n � 1, �109�

�n+1 � �n+1,2 + �n+1,n−1, ∀ n � N, n � 1. �110�

for UV locality and IR locality correspondingly. For a down-
scale cascade, the IR locality condition is satisfied under the
fusion rules hypothesis

�np = �p, ∀ p,n � N, n � 1,2 � p � n − 2, �111�

due to the Hölder inequality �n+1��2+�n−1 for the scaling
exponents �n. For an upscale cascade, the fusion rules hy-
pothesis gives

�np = �n − �n−p, ∀ p,n � N, n � 1,2 � p � n − 2,

�112�

and the IR locality condition is reduced to �n��2+�n−2
which is still satisfied, because the Hölder inequality reverses
its direction when the cascade is upscale �see Appendix D�.
The UV locality condition is also satisfied, but does not re-
quire the fusion rules hypothesis. All that is required is that
the scaling exponent �n,2 be positive. For a downscale cas-
cade this gives the condition �2�0 and for an upscale cas-
cade, the condition �n+1−�n−1�0. The assumption of the
regular fusion scaling is sufficient for that, for both upscale
and downscale cascades.

Let us now consider the case where the fusion rules are
violated according to

�np = �p + ��np �downscale� , �113�

�np = �n − �n−p + ��np �upscale� . �114�

As we have argued above, as long as the violation is regular,
UV localiy is still maintained. For IR locality, the sufficient
condition becomes

��n+1,2 + ��n+1,n−1 � 0 �downscale� , �115�

��n+1,2 + ��n+1,n−1 � 0 �upscale� . �116�

We see that locality survives even the violation of the fusion
rule hypothesis if ��n+1,2 and ��n+1,n−1 are both positive
downscale and negative upscale.

V. STABILITY OF THE UPSCALE
AND DOWNSCALE CASCADE

We now turn to the question of statistical stability with
respect to forcing perturbations. Statistical stability is defined
as the requirement that there should be a region Jn such that
Qn�	X
n� is negligible relative to contributions to Dkn�	X
n�
for all 	X
n�Jn in that region. Even when the forcing spec-
trum is confined to a narrow range of scales, it is not self-
evident that this requirement is satisfied, due to feedback
loops of Fn onto Qn �see below�.

The first explicit proof that the inertial range of three-
dimensional turbulence is statistically stable was given by
L’vov and Procaccia in Sec. II C 3 of Ref. �52�. The proof
used the balance equations of the standard structure func-
tions �not the generalized structure functions used in this
paper�, and it covers the case of stability with respect to
Gaussian forcing when the scaling exponents �n take Kol-
mogorov scaling values �n=n /3. The value of this proof has
gone by unnoticed because experiments and numerical simu-
lations have established the statistical stability of the three-
dimensional energy range beyond all doubt. For the problem
of two-dimensional turbulence, however, where the lack of
robustness of the upscale and downscale cascades is the un-
resolved problem, the method used by L’vov and Procaccia
in that proof is very illuminating. The main idea is to esti-
mate the scaling exponent of the ratio Qn /Dkn and require the
appropriate constraint on that exponent such that the ratio
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vanishes asymptotically in the inertial range, in the limit of
extending the range.

Consider a geometry of velocity differences 	x
n such that
all point to point distances have order of magnitude 1, and
define the scaling exponent qn by

Qn�R� � Qn�R	x
n� � �R

l0
�qn

, �117�

with R a scale in the inertial range. From locality �proved in
the previous section� we also know that

Dkn�R� � Dkn�R	x
n� � �R

l0
��n+1−1

. �118�

It follows that the ratio Qn /Dkn scales as

Qn�R�
Dkn�R�

� �R

l0
�qn−��n+1−1�

. �119�

In a direct cascade, such as the energy cascade of three-
dimensional turbulence and the enstrophy cascade of two-
dimensional turbulence, this ratio must vanish in the limit
l0→ +�. It follows that the condition for the statistical sta-
bility of a downscale cascade reads

�qn � qn − ��n+1 − 1� � 0, ∀ n � N, n � 1.

�120�

In an upscale cascade, such as the inverse energy cascade of
two-dimensional turbulence, the same ratio must vanish in
the limit l0→0. This leads to the same condition with the
inequality reversed

�qn � qn − ��n+1 − 1� � 0, ∀ n � N, n � 1.

�121�

A. The case of Gaussian forcing

For the simplest case of Gaussian delta-correlated in time
forcing, the exponents qn can be calculated in terms of �n.
This makes it possible to investigate statistical stability rig-
orously.

We begin with the assumption that f� is a delta-correlated
stationary Gaussian field with �f��x��=0 and

�f��x1,t1�f��x2,t2�� = 2C���x1,x2�
�t1 − t2� , �122�

where  is constant, and C�� is normalized such that
C���x ,x�=1. Without loss of generality we may assume that
��f�=0, and therefore P��f�= f�. Thus, we have the identity

� dyP���x2 − y�C���x1,y� = C���x1,x2� , �123�

which will be used below.
We define the forcing scale l0 from the Taylor expansion

C���x + y,x� =

��

d
− A��

�2�� �y�
l0
�2

+ O�l0
−4� , �124�

valid in the limit �y�� l0. Note that the odd-order terms van-
ish by incremental isotropy. In the limit �y�� l0, on the other
hand, we have the asymptotic expansion

C���x + y,x� � � l0

�y�
�a�A��

�0� + A��
�1�� l0

�y�
� + O�l0

2�� .

�125�

Note that a, which is an unspecified scaling exponent depen-
dent on our choice of stochastic forcing, must satisfy a�0,
since the correlation must vanish at �y�→ +�. Also note that
 is the total rate of energy injection. In general, the work
done on the fluid is in�x�= f��x�u��x�. For delta-correlated
forcing, it is easy to show that �in�x��=C���x ,x� �see proof
in Appendix C�.

Recall that the total forcing term Qn is given by

Qn�	X
n,t� = �
k=1

n

Qkn�	X
n
k,Xk,t� , �126�

where Qkn reads

Qkn
�1�2¯�n−1��	X
n−1,Y,t� =��

k=1

n−1

w�k
�Xk,t�����Y,t�� ,

�127�

with ���X , t�= f��x , t�− f��x� , t�. For Gaussian forcing, it can
be shown �see Appendix B� that the forcing contributions
Qkn to the generalized balance equations read

Qkn
�1¯�n−1��	X
n−1,Y,t� = �

l=1

n−1

Fn−2
�1¯�l−1�l+1¯�n−1�	X
n−1

l �Q�l�
�Xl,Y� , �128�

with Q���X ,Y� given by

Q���X,Y� = �w��X,t����Y,t�� = 2� dz�P���x − z� − P���x� − z���C���y,z� − C���y�,z�� �129�

=2�C���y,x� − C���y�,x� − C���y,x�� + C���y�,x��� . �130�

LOCALITY AND STABILITY OF THE CASCADES OF … PHYSICAL REVIEW E 78, 066302 �2008�

066302-13



The physical intuition is that there is a feedback loop be-
tween forcing, whose spectrum is defined by Q���X ,Y�, and
the resulting behavior of turbulence which is captured by the
structure functions Fn. More specifically, we see that Fn−2
provides feedback to Qn, when the forcing is Gaussian. For
statistical stability we need this feedback to be negligible in
the inertial range.

The immediate implication of Eq. �128� is that qn=�n−2
+q2 with q2 the scaling exponent of Q��. It follows that

�qn = ��n−2 + q2� − ��n+1 − 1� . �131�

The remaining challenge is to calculate q2. We will see that
q2 depends on whether the cascade is upscale or downscale.
In the rest of this section, we will derive the separate stability
conditions for a downscale cascade and for an upscale cas-
cade.

B. Stability conditions for downscale cascades

For the case of a downscale cascade, using the Taylor
expansion of Q���X ,Y� in the limit �X−Y�→0, the scaling
of Q�� can be estimated as

Q���X,Y� = 2�C���y,x� − C���y�,x� − C���y,x��

+ C���y�,x��� �132�

=2�„C���y,x� − C���x,x�… − „C���y�,x�

− C���x,x�… − „C���y,x�� − C���x�,x��…� �133�

+ �„C���y�,x�� − C���x�,x��…� �134�

��2/l0
2���y − x�2 − �y� − x�2 − �y − x��2

+ �y� − x��2�

� �R/l0�2, �135�

which suggests that for a downscale cascade, q2=2. It is easy
to see that for a monofractal velocity field with �n=nh, the
stability condition reads

�qn = ��n−2 + 2� − ��n+1 − 1� �136�

=3 − 3h � 0, ∀ n � N: n � 1, �137�

which requires h�1. In a multifractal case one has a linear
combination of independent monofractal contributions, and it
can be shown that the constraint 0��3�3 is a sufficient
condition for statistical stability. This follows from the in-
equality �n+1��3+�n−2 �see Appendix D�:

�qn = �n−2 − �n+1 + 3 �138�

��n−2 − �n−2 − �3 + 3 �139�

=3 − �3 � 0, ∀ n � N: n � 2. �140�

For n=2, we get �q2=q2− ��3−1�=3−�3, which implies,
from the stability condition �q2�0, that 0��3�3 is also a
necessary condition.

For the case of the downscale energy cascade of three-
dimensional turbulence we have �3=1, which can be derived
from the solvability condition for the homogeneous equation
O2F3=0 �42,43,47�. This satisfies the sufficient condition 0
��3�3 for statistical stability very generously, so it is
hardly a surprise that the energy cascade is so robust. Also
worth noting is that for a hypothetical downscale helicity
cascade we have �3=2, which also satisfies the stability con-
dition.

The story changes for the case of the downscale enstrophy
cascade. We know, from combining the Eyink and
Falkovich-Lebedev theories of the two-dimensional enstro-
phy cascade �22,23,74,75�, that when it exists with constant
enstrophy flux, the enstrophy cascade has no intermittency
corrections. Thus, the scaling exponents �n all satisfy the
monofractal scaling �n=n, which implies that

�qn = �n−2 − �n+1 + 3 = 0. �141�

So, we have a borderline situation where the stability condi-
tion is neither satisfied nor broken! Consequently, the actual
stability of the downscale enstrophy cascade is not decided
by scaling exponents but by the numerical coefficients in
front of Qn and Dkn. This is where it gets interesting.

The leading contribution to Qn is proportional to the total
rate of energy injection . However, one should bear in mind
that the downscale enstrophy cascade is forced by the com-
bined effect of both the forcing term f� and the large-scale
dissipation term �−1�m+1��−2mu�. As a result of this com-
bined forcing, the enstrophy cascade is injected with a
smaller enstrophy rate �uv and a very small energy rate uv
with �uv�� and uv�. If we assume that this combined
effect itself can be modeled as Gaussian forcing, then the
leading contribution to the effective forcing on the enstrophy
cascade is proportional only to the rate uv of the subleading
downscale energy flux. Because uv vanishes rapidly as the
separation of scales in the enstrophy cascade is increased
�36,40�, this leading contribution can be made as small as
desired simply by taking the limit 	→0+. For small enough
downscale energy flux uv, the next order term with q2�3
becomes dominant, and combined with �n=n it is easy to
show that the stability condition is now �qn�0.

The conclusion from this analysis is that the stability of
the downscale enstrophy cascade requires that the accompa-
nying downscale energy flux should be very small. For that
to happen, we need two things. First, it is necessary to have
a dissipation sink at large scales to absorb most of the in-
jected energy at the forcing scale or at larger scales. Second,
we must have a large separation of scales between the forc-
ing scale and the dissipation scale at small scales, which
means that a significant amount of numerical resolution is
required. These two requirements, we believe, are the reason
why it has been so difficult to reproduce the enstrophy cas-
cade in numerical simulations. It is worth noting that Tran
and Bowman �21� came to a similar conclusion by a different
argument, that the robustness of the downscale enstrophy
cascade requires a vanishing downscale energy flux.
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C. Stability conditions for upscale cascades

The fundamental difference between an upscale cascade
and a downscale cascade with respect to stability is that in
the upscale cascade the Hölder inequalities now take the
form �n+k��n+�k, and the condition for statistical stability
reads qn�0, ∀n�1. We will now prove that inverse cas-
cades are always statistically stable with respect to variations
in the forcing statistics, provided that �3�1. This is consis-
tent with the numerical evidence that the inverse energy cas-
cade is much easier to obtain in simulations than the direct
enstrophy cascade.

Again, using Taylor expansion in the limit �X−Y�→�,
we see that Q�� scales as

Q���X,Y� = 2�C���y,x� − C���y�,x� − C���y,x��

+ C���y�,x��� �142�

�2�� l0

�y − x��
a

− � l0

�y� − x��
a

− � l0

�y − x��
�a

+ � l0

�y� − x��
�a� , �143�

which gives q2=−a�0. For a monofractal velocity field with
�n=nh, the stability condition reads

�qn = qn − ��n+1 − 1� �144�

=q2 + �n−2 − ��n+1 − 1� �145�

=q2 + 1 − 3h � 0, ∀ n � N: n � 1. �146�

Since q2�0, the condition h�1 /3 is sufficient. For the more
general multifractal case, using the inequality �n+1��3
+�n−2, we can upper-bound �qn as follows:

�qn = q2 + �n−2 − ��n+1 − 1� �147�

�q2 + 1 − ��n−2 + �3� + �n−2 �148�

=q2 + 1 − �3, ∀ n � N: n � 2. �149�

For n=2, we get an equality: �q2=q2− ��3−1�. Thus, the
stability condition �qn�0 is satisfied when �3�q2+1,
which is indeed satisfied when q2�0 and �3�1. For
the inverse energy cascade of two-dimensional turbu-
lence, we have �3=1 which satisfies the requirements for
stability.

There is, however, another effect that can destabilize the
inverse energy cascade. We have shown in a previous paper
�47� that the loss of asymptotic homogeneity by the effect of
the boundary conditions on the flow amplifies the sweeping
term In at the large scales. As a result, at sufficiently large
length scales, the ratio In /Dkn becomes significant, and ex-
cites a particular solution superimposed on top of the homo-
geneous solution associated with the inverse cascade. The
particular solution corresponds to the coherent structures
associated with the “energy condensation effect.” The forma-
tion of these coherent structures is very likely to further

intensify the ratio In /Dkn. As we have explained in the Intro-
duction, it has been shown that if these coherent vortices are
removed before the evaluation of the energy spectrum, the
usual inverse energy cascade spectrum is recovered
�30,32,34�. This result is consistent with our theory, and it
confirms that the homogeneous solution, corresponding to
the inverse energy cascade, exists side by side with the par-
ticular solution, corresponding to the coherent structures,
even when the particular solution is dominant. The possible
role of the sweeping term on the stability of the enstrophy
cascade is currently not well understood.

VI. CONCLUSION AND DISCUSSION

We have shown that the nonperturbative locality of the
inertial ranges of two-dimensional turbulence is an immedi-
ate consequence of the fusion rules hypothesis. The physical
interpretation of what we have done is to prove, strictly in
the context of the incompressible Navier-Stokes equation,
that universality implies locality. A proof of the fusion rules
by diagrammatic theory is essentially the converse and more
interesting claim: that locality implies universality. This re-
sult leads to an apparently curious paradox: the usual under-
standing of locality, in terms of triad interactions in Fourier
space, suggests that a necessary condition for locality is that
the energy spectrum E�k� must have slope between k−3 and
k−1. This corresponds to the inequality 0��2�2. The para-
dox is that this constraint does not appear anywhere in our
locality proof. In recent work, Eyink �76� investigated the
locality of the downscale enstrophy cascade and the inverse
energy cascade using a filtering method �77–79�. His argu-
ment also leads to the inequality 0��2�2 as a sufficient
locality condition. It follows that whereas the inverse energy
cascade is local, the direct enstrophy cascade is IR margin-
ally nonlocal. Unlike the argument in this paper, Eyink’s
argument has only considered the kinematic locality of the
flux term and not the statistical locality associated with un-
fused higher-order structure functions. On the other hand,
our argument is less rigorous in its present form, as it as-
sumes the fusion rules without proof.

A fundamental problem with establishing locality in Fou-
rier space is that the Fourier transform involves an integral
that ranges over every length scale, including the forcing
length scales and the dissipation length scales. To preserve
locality, the main contribution to the integral must come
from the inertial range. The inequality 0��2�2 comes in as
a necessary condition for the survival of locality under the
Fourier integral �64�. The same issue arises when locality is
characterized with a filtering transform �i.e., forward Fourier,
truncation, backward Fourier�, as was done by Eyink �76�,
albeit with a broader definition of filtering. Beyond that, the
underlying argument based on diagrammatic theory �50–52�
that justifies the fusion rules hypothesis itself can impose
further constraints on �2, which still need to be investigated
carefully. For example, one other way the constraint 0��2
�2 can come in is if we require perturbative locality for
each Feynman diagram �50�. Perturbative locality may be a
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necessary condition for the fusion rules hypothesis. If that is
true, then perhaps 0��2�2 is implicitly assumed when we
postulate the fusion rules hypothesis. We have also shown in
this paper that the related condition 0��3�3 is required for
stability under Gaussian forcing, which is as essential as lo-
cality for the existence of a universal inertial range.

It should be stressed that any constraints on scaling expo-
nents needed only to prove the fusion rules hypothesis by
Feynman diagrams, are needed only to establish the univer-
sality of the scaling exponents �n of the inertial range. We
should expect to find that the conditions for locality itself are
weaker. For example, we have shown in this paper that lo-
cality is possible even when the fusion rules fail, provided
that the fusion exponents �np deviate in the correct direction.
In fact, it is possible to have local interactions, as per our
definition, even when the underlying diagrammatic theory
does not yield local Feynman diagrams! This scenario is not
entirely hypothetical; in the case studied by Ref. �80� of an
enstrophy range under strong Ekman dissipation, this may be
precisely what happens, with the slope being steeper than k−3

and non-universal, but still allowing an appearently local en-
strophy cascade to exist.

The key idea that can help us unravel these paradoxes is
that the non-perturbative locality studied in this paper is a
weaker condition than perturbative locality. Nonperturbative
locality requires only the combined effect of all Feynman
diagrams to be local. Perturbative locality, on the other hand,
requires that each diagram individually should be local. This
distinction between perturbative and non-perturbative local-
ity may clarify the paradoxical situation with the enstrophy
cascade where the spectrum of the enstrophy cascade is con-
sistent with a dimensional analysis argument based on a lo-
cality assumption even though the slope is too steep to be
self-consistent with that assumption. Adding a logarithmic
correction resolves the situation in a one-loop closure model
�81�, and the combination of more recent results by Falkov-
ich and Lebedev �23� and Eyink �75� suggest that the same
logarithmic correction persists for the exact theory, with no
higher-order adjustments. Nevertheless, a reconcilliation of
the spectrum slope and the locality requirement is still an
“uncomfortable” notion, to say the least. We believe that a
possible resolution of this paradox is to claim that the enstro-
phy cascade is local in the nonperturbative sense, as far as
the exact theory is concerned, and borderline nonlocal only
in the perturbative sense. From a physical standpoint the rel-
evant locality needed as a precondition for establishing the
existence of an inertial range is the nonperturbative locality.
However, some confusion can arise from the fact that closure
models unwittingly exchange nonperturbative locality with
perturbative locality.

The careful reader will note that the nonperturbative lo-
cality is also weaker than the more intuitive �and less rigor-
ous� physical understanding of locality as the notion that the
effect of the forcing range and dissipation range is “forgot-
ten” in the inertial range. We may designate locality, in this
sense, as “strong” locality, so that it can be distinguished
from the weaker nonperturbative statistical locality. The pro-
posed theory can help make the meaning of this notion of
“strong” locality more rigorous. The key idea is that it is

possible to have local interaction integrals in the contribu-
tions to the OnFn+1 term of the balance equations and still
pick up an effect from the forcing range or the dissipation
range into the multidimensional regions Jn that are supposed
to be the inertial range, in our generalized sense. It all de-
pends on how much forcing and dissipation “wish to creep
into” the inertial range. We can find that out by comparing
the magnitude of the Qn, In, and DnFn terms of the general-
ized balance equations against the magnitude of the contri-
butions Dkn to the interaction term. Thus, we find that there
are three distinct conditions that need to hold to have strong
locality: first, the interaction integral itself has to be local;
second, we need to establish the property of statistical sta-
bility which will guarantee that the forcing effect Qn and the
sweeping interactions In do not creep into the inertial range;
third, a calculation of the shape of the dissipation range can
show whether there is a wide enough region Jn in which the
dissipation term DnFn is negligible. One advantage of the
generalized balance equations framework is that it allows us
to account mathematically for these three distinct effects
separately.

In this paper, we examined only the first condition and
part of the second condition. We have shown that statistical
stability with respect to forcing applies unconditionally for
the inverse energy cascade. For the enstrophy cascade, sta-
tistical stability requires large-scale dissipation and a vanish-
ing downscale energy dissipation. For any downscale cas-
cade in general, stability constrains the corresponding
exponent as h�1. For an upscale cascade, the corresponding
constraint is h�1 /3. We began considering the role of
sweeping in a previous paper �47�, and the role of the dissi-
pation term will be studied in future work.
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APPENDIX A: DERIVATION OF THE BALANCE
EQUATIONS

In this appendix we give a detailed derivation of the gen-
eralized balance equations. Recall that we defined the gener-
alized structure function Fn as

Fn�	X
n,t� =��
k=1

n

w�k
�Xk,t��� . �A1�

By differentiating Fn with respect to t and substituting the
Navier-Stokes equations we obtain

�Fn�t�
�t

= �
k=1

n  �w�k
�xk,x�k,t�

�t � �
l=1,l�k

n

w�l
�xl,x�l,t���

= �
k=1

n

�− Nkn + Qkn� + 	Jn + �Hn. �A2�
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Here, the terms 	Jn and �Hn are the contributions of the
small-scale and large-scale sinks with

Jn
�1�2¯�n�	x,x�
n,t� = �

k=1

n

��xk

2� + �x�k

2� �Fn�	x,x�
n,t� ,

�A3�

Hn
�1�2¯�n�	x,x�
n,t� = �

k=1

n

��xk

−2m + �x�k

−2m�Fn�	x,x�
n,t� ,

�A4�

where �xk

2 is the Laplacian with respect to xk; �x�k

2 is the

Laplacian with respect to x�k. Also, Nkn represents the con-
tributions of P�����u�u��, and Qkn represents the contribu-
tions of P��f�, and they read

Qkn
�1�2¯�n�	x,x�
n,t� =� �

l=1,l�k

n

w�l
�xl,x�l,t��P�k��f��xk,t� − f��x�k,t��� , �A5�

Nkn
�1�2¯�n�	x,x�
n,t� =� �

l=1,l�k

n

w�l
�xl,x�l,t��P�k����,xk

�u�,xk
u�,xk

� − ��,x�k
�u�,x�k

u�,x�k
��� �A6�

=� �
l=1,l�k

n

w�l
�xl,x�l,t��P�k�N��xk,x�k,t�� �A7�

=� �
l=1,l�k

n

w�l
�xl,x�l,t�� � dyP�k��y�N��xk − y,x�k − y,t�� . �A8�

Here we use the abbreviations u�,xk
=u��xk , t� and u�,x�k

=u��x�k , t�, w�,k=w��xk ,x�k , t�, and ��,xk
is the spatial deriva-

tive in the direction with respect to xk. Also, N��xk ,x�k , t� is
the nonlinear factor defined as

N��xk,x�k,t� = ��,xk
�u�,xk

u�,xk
� − ��,x�k

�u�,x�k
u�,x�k

�

= u�,xk
��,xk

�u�,xk
− u�,x�k

�

+ u�,x�k
��,x�k

�u�,xk
− u�,x�k

�

= ��,xk
�u�,xk

w�,k� + ��,x�k
�u�,x�k

w�,k�

= u�,xk
��,xk

w�,k + u�,x�k
��,x�k

w�,k.

It is easy to see that the nonlinear terms Nkn cannot be
written exclusively in terms of velocity differences. The re-
markable characteristic of the derivation of the balance equa-
tions by L’vov and Procaccia �43� is that the nonlinear term
Nkn is rearranged as the sum of a local term Dkn and a sweep-
ing term Ikn such that the local term can be expressed as a
linear operator on Fn+1. Although L’vov and Procaccia �43�
eliminated the sweeping term on the grounds of global ho-
mogeneity, we believe it is appropriate to retain it here in its
simplified form.

To isolate the sweeping term, we define a generalized
mean velocity U��	z ,z�
n , t� as

U��	z,z�
n,t� =
1

2n
�
k=1

n

�u��zk,t� + u��z�k,t�� , �A9�

and the corresponding velocity fluctuation

v��x,	z,z�
n,t� = u��x,t� − U��	z,z�
n,t�

=
1

2n
�
k=1

n

�w��x,zk� + w��x,z�k�� .

�A10�

We may then decompose N��xk ,x�k , t�, in general, to

N��xk,x�k,t� = S��xk,x�k,	z,z�
n,t� + L��xk,x�k,	z,z�
n,t� ,

�A11�

where 
� and L� are defined as

S��xk,x�k,	z,z�
n,t� = U��	z,z�
n,t����,xk
+ ��,x�k

�w��xk,x�k,t� ,

L��xk,x�k,	z,z�
n,t� = �v��xk,	z,z�
n,t���,xk

+ v��x�k,	z,z�
n,t���,x�k
�w��xk,x�k,t� .

�A12�

In general, 	z ,z�
n can be chosen any way we wish. Here, we
specifically use the choice
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N��xk,x�k,t� = L��xk,x�k,	x,x�
n,t� + S��xk,x�k,	x,x�
n,t� . �A13�

This gives the decomposition Nkn=Dkn+ Ikn with

Dkn
�1�2¯�n�	x,x�
n,t� =� �

l=1,l�k

n

w�l
�xl,x�l,t�� � dyP�k��y�L��xk − y,x�k − y,	x,x�
n,t�� , �A14�

Ikn
�1�2¯�n�	x,x�
n,t� =� �

l=1,l�k

n

w�l
�xl,x�l,t�� � dyP�k��y�S��xk − y,x�k − y,	x,x�
n,t�� . �A15�

Here Ikn represents the sweeping interactions and Dkn represents the local interactions.
The sweeping term Ikn can be simplified as follows: We use the decomposition P���x�=
��
�x�− P��

� �x� to split Ikn to two
terms Ikn= Ikn

�1�+ Ikn
�2� with Ikn

�1� corresponding to 
��
�x� and Ikn
�2� corresponding to P��

� �x�. We also use P��
� u�=0. The integral

inside the ensemble average of Ikn splits to two parts I1 and I2. The first part I1 reads

I1 =� dy
�k�
�y�S��xk − y,x�k − y,	x,x�
n,t� = S�k
�xk,x�k,	x,x�
n,t� �A16�

=U��	x,x�
n,t����,xk
+ ��,x�k

�w�k
�xk,x�k,t� . �A17�

The second part I2 is shown to be zero by incompressibility:

I2 =� dyP��
� �y�S��xk − y,x�k − y,	x,x�
n,t� �A18�

=� dyP��
� �y�U��	x,x�
n,t����,xk

+ ��,x�k
�w��xk − y,x�k − y,t� �A19�

=U��	x,x�
n,t����,xk
+ ��,x�k

� � dyP��
� �y�w��xk − y,x�k − y,t� = 0. �A20�

Because P��
� is the nonlocal part of the projection operator, this result implies that the pressure effect does not contribute

to the sweeping interactions or to the violation of incremental homogeneity. Thus, Ikn is determined by I1 and it simplifies to

Ikn
�1�2¯�n�	x,x�
n,t� =� �

l=1,l�k

n

w�l
�xl,x�l,t��U��	x,x�
n,t����,xk

+ ��,x�k
�w�k

�xk,x�k,t�� �A21�

=���,xk
+ ��,x�k

�U��	x,x�
n,t���
l=1

n

w�l
�xl,x�l,t��� . �A22�

This result was given previously by L’vov and Procaccia in Sec. IV B and Appendix B of Ref. �43�.
We will now show that the local interaction term Dkn can be written as a linear transformation of Fn+1. First, note that

L��xk,x�k,	x,x�
n,t� = �v��xk,	x,x�
n,t���,xk
+ v��x�k,	x,x�
n,t���,x�k

�w��xk,x�k,t� �A23�

=��,xk
�v��xk,	x,x�
n,t�w��xk,x�k,t�� + ��,x�k

�v��x�k,	x,x�
n,t�w��xk,x�k,t�� �A24�

=
1

2n
�
l=1

n

��,xk
��w��xk,xl,t� + w��xk,x�l,t��w��xk,x�k,t�� �A25�

+
1

2n
�
l=1

n

��,x�k
��w��x�k,xl,t� + w��x�k,x�l,t��w��xk,x�k,t�� , �A26�

which gives
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L��xk − y,x�k − y,	x,x�
n,t� =
1

2n
�
l=1

n

��,xk
	�w��xk − y,xl,t� + w��xk − y,x�l,t��w��xk − y,x�k − y,t�
 �A27�

+
1

2n
�
l=1

n

��,x�k
	�w��x�k − y,xl,t� + w��x�k − y,x�l,t��w��xk − y,x�k − y,t�
 . �A28�

It follows from substituting the above to Eq. �A14� that Dkn is given by

Dkn
�1�2¯�n�	x,x�
n,t� =

1

2n
�
l=1

n � dyP�k��y�Dknl
�1�2¯�k−1�¯�n�	x,x�
n,y,t� , �A29�

with Dknl=Dknl1+Dknl2+Dknl3+Dknl4 and

Dknl1
�1¯�k−1��k+1¯�n�	x,x�
n,y,t� = ��n+1,xk

Fn+1
�1¯�k−1��k+1¯�n+1�	Xm
m=1

k−1 ,xk − y,x�k − y,	Xm
m=k+1
n ,xk − y,xl� , �A30�

Dknl2
�1¯�k−1��k+1¯�n�	x,x�
n,y,t� = ��n+1,xk

Fn+1
�1¯�k−1��k+1¯�n+1�	Xm
m=1

k−1 ,xk − y,x�k − y,	Xm
m=k+1
n ,xk − y,x�l� , �A31�

Dknl3
�1¯�k−1��k+1¯�n�	x,x�
n,y,t� = ��n+1,x�k

Fn+1
�1¯�k−1��k+1¯�n+1�	Xm
m=1

k−1 ,xk − y,x�k − y,	Xm
m=k+1
n ,x�k − y,xl� , �A32�

Dknl4
�1¯�k−1��k+1¯�n�	x,x�
n,y,t� = ��n+1,x�k

Fn+1
�1¯�k−1��k+1¯�n+1�	Xm
m=1

k−1 ,xk − y,x�k − y,	Xm
m=k+1
n ,x�k − y,x�l� . �A33�

APPENDIX B: FORCING CONTRIBUTION
FOR GAUSSIAN FORCING

We give here a proof of Eqs. �128� and �130�, closely
following the argument in Sec. II C 3 of Ref. �52�. We
exploit the following mathematical result: if f��x1 , t1� is a
Gaussian stochastic field, the ensemble averages of the form
�f��x1 , t1�R�f�� can be evaluated for any analytic functional
R�f� by the following integral:

�f��x1,t1�R�f�� =� dx2dt2�f��x1,t1�f��x2,t2�� 
R�f�

f��x2,t2�� .

�B1�

We begin the proof by defining the following response func-
tions:

G���X,t1;y,t2� =  
w��X,t1�

f��y,t2� � , �B2�

Gmn
�1¯�m�1¯�n�	X
m,t,	y,�
n�

=��
k=1

n




f�k
�yk,�k�

���
l=1

m

w�l
�Xl,t��� . �B3�

For the case t1= t2= t, the response function G���X , t ;y , t� is
given by

G���X,t;y,t� = �1/2��P���x − y� − P���x� − y�� . �B4�

This is proved in Appendix C. Likewise, for the case m=1
and �1= t, the response function G1n

�1¯�n��	X
n , t ,y , t� is given
by

G1n
�1¯�n��	X
n,t,y,t�

= 



f��y,t���
l=1

n

w�l
�Xl,t���

= �
k=1

n � �
l=1,l�k

n

w�l
�Xl,t��
w�k

�Xk,t�


f��y,t� � �B5�

=�
k=1

n

Fn−1
�1¯�k−1�k+1¯�n�	X
n

k�G�k��Xk,t;y,t� . �B6�

Here we exploit the fact, first pointed out in Ref. �52�, that
the variational derivative �
w�k

�Xk , t�� / �
f��y , t�� is not cor-
related with the velocity differences w�l

�Xl , t� because no
time is being allowed for interaction to develop a correlation.
Using Eq. �B1� the correlation between w��X� and f��y� is
given by

�w��X�f��y�� =� dz� d� 
w��X�
f��z,�� ��f��y,t�f��z,���

= 2� dzG���X,t;z,t�C���y,z� , �B7�

and it follows that
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Q���X,Y� = 2� dzG���X,t;z,t��C���y,z� − C���y�,z�� �B8�

=2� dz�P���x − z� − P���x� − z���C���y,z� − C���y�,z�� . �B9�

Using a similar argument for the more general case, we get

��
l=1

n−1

w�l
�Xl,t�� f��y,t�� =� dz� d� 



f��z,����
l=1

n−1

w�l
�Xl,t����f��y,t�f��z,��� �B10�

=2� dzG1,n−1
�1¯�n−1��	X
n−1,z�C���y,z� , �B11�

�B12�
and it follows that

Qkn
�1¯�n−1��	X
n−1,Y,t� =��

l=1

n−1

w�l
�Xl,t���f��y,t� − f��y�,t��� �B13�

=2� dzG1,n−1
�1¯�n−1��	X
n−1,z��C���y,z� − C���y�,z�� �B14�

=2�
l=1

n−1

Fn−2
�1¯�l−1�l+1¯�n−1�	X
n−1

l � � dzG�l�
�Xl,t;z,t��C���y,z� − C���y�,z�� �B15�

=�
l=1

n−1

Fn−2
�1¯�l−1�l+1¯�n−1�	X
n−1

l �Q�l�
�Xl,Y� . �B16�

This concludes the proof.

APPENDIX C: EVALUATION OF THE ONE-TIME
RESPONSE FUNCTION

We show how to calculate the one-time response function
and use it to show that the ensemble average of the rate of
energy injection in�x� is given by �in�x��=C���x ,x�. This
argument was given previously by McComb �82�.

We begin with the definition of the response function

G���x1,t1;x2,t2� =  
u��x1,t1�

f��x2,t2� � . �C1�

We first show that at equal times t1= t2, G�� is given by

G���x1,t1;x2,t1� =
1

2
P���x1 − x2� . �C2�

To show this, note that from linearity with respect to forcing

u��x,t� = u��x,0� + �
0

t

dsA��u��s���r�

+ �
0

t

ds� dyP���x − y�f��y,s� , �C3�

where A��u��s���r� represents the effect of the advection and
pressure term. For convenience, we use the abbreviation g�

=P��f�. It follows that


u��x1,t1�

f��x2,t2�

= �
0

t1

ds

A��u��s���x1�


f��x2,t2�

+




f��x2,t2��0

t1

ds� dyP���x − y�f��y,s�

�C4�
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=�
t2

t1

ds

A��u��s���r�


f��x2,t2�
+





f��x2,t2�

�� dy�
0

�

dt�H�t1 − t�P���x1 − y��f��y,t�

�C5�

=�
t2

t1

ds

A��u��s���r�


f��x2,t2�

+ H�t1 − t2�P���x1 − x2� . �C6�

with H�t� the Heaviside function, defined as the integral of a
delta function

H�t� = �
0

t


���d� = �1, if t � �0, + �� ,

1/2, if t = 0,

0, if t � �− �,0� .
� �C7�

For t1= t2, the integral of the first term vanishes and H�0�
=1 /2, therefore it follows that

G���x1,t1;x2,t1� =
1

2
P���x1 − x2� . �C8�

Also note that in fact there is a discontinuity in the response
function and

lim
�t→0+

G���x1,t + �t;x2,t� = P���x1 − x2� . �C9�

From this result, it immediately follows that

�in�x�� =� dx0� dt0�f��x,t�f��x0,t0�� �C10�

=� dx02C���x,x0�G���x,t;x0,t� �C11�

=� dx0C���x,x0�P���x − x0� = C���x,x� . �C12�

APPENDIX D: SCALING EXPONENT INEQUALITIES

We will show here that for a downscale and upscale cas-
cade, correspondingly, the scaling exponents satisfy the in-
equalities

�n+k � �n + �k �downscale� , �D1�

�n+k � �n + �k �upscale� . �D2�

The first of these inequalities is well known. The key result
here is the second inequality, corresponding to the case of an
upscale cascade, whose direction reverses, thus giving a con-
vex upward �or flat� dependence of �n as a function of n. This
should be contrasted with the case of a downscale cascade
where the dependence of �n on n is convex downward �or
flat�. The proof is “folklore” and it uses the Schwarz and

Hölder inequalities. An earlier version of this argument was
given by Frisch �63,64�, who in turn cites Feller �83�.

Let p ,q� �1, +�� with 1 / p+1 /q=1, and let � ,� be two
random variables with ��0 and ��0. The Hölder inequal-
ity for ensemble averages states that ����� ��p�1/p��q�1/q.
For p=q=1 /2 it reduces to the Schwarz inequality ����2

� ��2���2�.
We begin by defining w�R� as the absolute value of the

longitudinal velocity difference

w�R� = ��u�x + Re,t� − u�x,t�� · e� , �D3�

where x�Rd is given and e is a unit vector. The proof is
based on the following two assumptions �a�. For a downscale
cascade, in the limit l0→�, w�R� scales as ��w�R��n�
��R / l0��n. For an upscale cascade, the same scaling law
holds for the limit l0→0+. �b� For finite l0 there is a range of
scales where the above scaling law continues to hold as an
intermediate asymptotic

The proof uses two “helper” inequalities that are interest-
ing in themselves. The first “helper” inequality is deduced by
choosing �= �w�R���n−1�/2 and �= �w�R���n+1�/2 and employ-
ing the Schwarz inequality. It follows that

��w�R��n�2 = ����2 � ��2���2� �D4�

=��w�R��n−1���w�R��n+1� , �D5�

and, therefore,

��w�R��n�2

��w�R��n−1���w�R��n+1�
� �R

l0
�2�n−�n−1−�n+1

� 1. �D6�

To satisfy this inequality under the limit l0→� we require
2�n−�n−1−�n+1�0. Thus we get for a downscale cascade

�n+1 − �n � �n − �n−1 �downscale� . �D7�

Likewise, for an upscale cascade, the inequality must be sat-
isfied in the limit l0→0+, which requires 2�n−�n−1−�n+1
�0. Thus, for an upscale cascade we have

�n+1 − �n � �n − �n−1 �upscale� . �D8�

The second “helper” inequality is deduced by choosing
�= �w�R��n and �= �w�R��0=1 and employing the inequality
with p= �n+1� /n and q=n+1. It follows that

��w�R��n� � ���n+1�/n�n/�n+1���n+1�1/�n+1� �D9�

=��w�R��n+1�n/�n+1�, �D10�

which implies that

��w�R��n�
��w�R��n+1�n/�n+1� � �R

l0
��n−�n/�n+1���n+1

� 1. �D11�

By similar reasoning, we find that

�n+1 �
n + 1

n
�n �downscale� , �D12�

�n+1 �
n + 1

n
�n �upscale� . �D13�
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Now let us consider the case of a downscale cascade. We
assume with no loss of generality that n�k �otherwise for
the following step, one may exchange n and k�. Combining
the inequalities �D7� and �D12� gives

�n+k − �n = �
a=n

n+k−1

��a+1 − �a� � k��k+1 − �k� �D14�

�k� k + 1

k
�k − �k� = �k. �D15�

Thus we establish that

�n+k � �n + �k �downscale� . �D16�

For the case of the upscale cascade, the exact same argu-
ment, with every inequality reversed, gives

�n+k � �n + �k �upscale� . �D17�
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